What is a (smooth) cubic surface?

Definition

zero set $S \subset \mathbb{P}^3$ of a homogeneous cubic polynomial $F(x, y, z, w)$

- **singular**
 \[x^2(x + w) = w(y^2 + z^2)\]

- **smooth**
 \[x^3 + y^3 + z^3 + w^3 = 0\]
The Cayley–Salmon Theorem

\[M = \{ S \mid S \subset \mathbb{C}P^3 \text{ smooth cubic surface} \} = \{ F \mid F \text{ homogeneous smooth degree 3 in } \mathbb{C}[x,y,z,w] \}/\mathbb{C}^\times \]
The Cayley–Salmon Theorem

- $M_{\text{line}} = \{(S, L) \mid S \in M, L \subset S, L \text{ line}\}$

- $M = \{S \mid S \subset \mathbb{CP}^3 \text{ smooth cubic surface}\}$

 $= \{F \mid F \text{ homogeneous smooth degree 3 in } \mathbb{C}[x, y, z, w]\} / \mathbb{C}^\times$
The Cayley–Salmon Theorem

\[M_{\text{line}} = \{(S, L) \mid S \in M, L \subset S, L \text{ line}\} \]

\[M = \{S \mid S \subset \mathbb{CP}^3 \text{ smooth cubic surface}\} \]
\[= \{F \mid F \text{ homogeneous smooth degree 3 in } \mathbb{C}[x,y,z,w] \}/\mathbb{C}^\times \]

Theorem (Cayley–Salmon)

The projection \(M_{\text{line}} \rightarrow M \) *is a* 27 : 1 covering map.*
The lines on the Clebsch surface

Figure: 27 lines on the Clebsch surface: $x^3 + y^3 + z^3 + w^3 = (x + y + z + w)^3$

Image credit: Greg Egan, via the AMS Visual Insight blog by John Baez
What about points?

- \(M_{\text{point}} = \{(S,p) \mid S \in M, \ p \in S\} \)

universal bundle

- \(M = \{S \mid S \subset \mathbb{CP}^3 \text{ smooth cubic surface}\} = \{F \mid F \text{ homogeneous smooth degree 3 in } \mathbb{C}[x,y,z,w]\} / \mathbb{C}^\times \)
From topology to point counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q
From topology to point counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q

- $M_\text{line}(\mathbb{F}_q)$: pairs (S, L) over \mathbb{F}_q
From topology to point counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q

- $M_{\text{line}}(\mathbb{F}_q)$: pairs (S, L) over \mathbb{F}_q

- Average number of lines: $\frac{\#M_{\text{line}}(\mathbb{F}_q)}{\#M(\mathbb{F}_q)}$
From topology to point counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q

- $M_{\text{line}}(\mathbb{F}_q)$: pairs (S, L) over \mathbb{F}_q

- Average number of lines: $\frac{\#M_{\text{line}}(\mathbb{F}_q)}{\#M(\mathbb{F}_q)} = 1 + O\left(\frac{1}{\sqrt{q}}\right)$

- M_{line} connected $\implies H^0(M) \cong H^0(M_{\text{line}})$
From topology to *point* counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q
- $M_{\text{point}}(\mathbb{F}_q)$: pairs (S, p) over \mathbb{F}_q

Average number of points:

$$\# M_{\text{point}}(\mathbb{F}_q) = q^2 + O(q)$$

Need more knowledge about:

- $H^*(M)$
- $H^*(M_{\text{line}})$
- $H^*(M_{\text{point}})$
From topology to *point* counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q

- $M_{\text{point}}(\mathbb{F}_q)$: pairs (S,p) over \mathbb{F}_q

- Average number of points: $\frac{\#M_{\text{point}}(\mathbb{F}_q)}{\#M(\mathbb{F}_q)} = q^2 + O(q)$
From topology to *point* counts

- $M(\mathbb{F}_q)$: smooth cubic surfaces over \mathbb{F}_q

- $M_{\text{point}}(\mathbb{F}_q)$: pairs (S, p) over \mathbb{F}_q

- Average number of points: $\frac{\#M_{\text{point}}(\mathbb{F}_q)}{\#M(\mathbb{F}_q)} = q^2 + O(q)$

- Need more knowledge about: $H^*(M), H^*(M_{\text{line}}), H^*(M_{\text{point}})$
Theorem (Vassiliev 1999)

\[H^* (M; \mathbb{Q}) \cong H^* (\text{PGL}(4, \mathbb{C}); \mathbb{Q}). \]
Theorem (Vassiliev 1999)

\[H^*(M; \mathbb{Q}) \cong H^*(\text{PGL}(4, \mathbb{C}); \mathbb{Q}). \]

- Why \(\text{PGL}(4, \mathbb{C}) \)? Automorphism group of \(\mathbb{C}P^3 \)
Cohomology of M

Theorem (Vassiliev 1999)

\[H^* (M; \mathbb{Q}) \cong H^* (\text{PGL}(4, \mathbb{C}); \mathbb{Q}) \].

- **Why $\text{PGL}(4, \mathbb{C})$?** Automorphism group of $\mathbb{C}P^3$

- **Fix** $S_0 \in M \rightsquigarrow$ orbit map $g \mapsto g(S_0)$, $\text{PGL}(4, \mathbb{C}) \to M$
Cohomology of M

Theorem (Vassiliev 1999)

\[H^*(M; \mathbb{Q}) \cong H^*(\text{PGL}(4, \mathbb{C}); \mathbb{Q}). \]

- Why PGL(4, \mathbb{C})? Automorphism group of $\mathbb{C}P^3$

- Fix $S_0 \in M \leadsto \text{orbit map } g \mapsto g(S_0), \text{PGL}(4, \mathbb{C}) \to M$

Theorem (Peters–Steenbrink 2003)

The orbit map induces $H^*(M; \mathbb{Q}) \cong H^*(\text{PGL}(4, \mathbb{C}); \mathbb{Q})$.
Cohomology of M_{line}

Theorem (D.)

$H^*(M_{\text{line}}; \mathbb{Q}) \cong H^*(M; \mathbb{Q})$; induced by the covering map.

Corollary

Average number of lines $= 1$.

- In fact, $\# M_{\text{line}}(F_q) = \# M(F_q) = q^4 \cdot \# \text{PGL}(4, F_q)$.

arXiv:1803.04146
Theorem (D.)

\[H^*(M_{\text{line}}; \mathbb{Q}) \cong H^*(M; \mathbb{Q}) \]; induced by the covering map.

Corollary

Average number of lines $= 1$.

- In fact, $#M_{\text{line}}(\mathbb{F}_q) = #M(\mathbb{F}_q) = q^4(#\text{PGL}(4, \mathbb{F}_q))$.
Theorem (D.)

\[H^*(M_{\text{point}}; \mathbb{Q}) \cong H^*(M \times \mathbb{C}P^2; \mathbb{Q}). \]
Theorem (D.)

\[H^* (M_{\text{point}}; \mathbb{Q}) \cong H^* (M \times \mathbb{C}P^2; \mathbb{Q}). \]

Corollary

Average number of points = \(q^2 + q + 1 \).
Improvement in progress: distribution of points

\[t \quad 51840q^4 \times (\text{proportion of surfaces with } q^2 + tq + 1 \text{ points}) \]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(80q^4 + 240q^3)</th>
<th>(- 400q - 240)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2)</td>
<td>(3465q^4 - 1935q^3 + 2025q^2 - 8145q - 1890)</td>
<td></td>
</tr>
<tr>
<td>(-1)</td>
<td>(11664q^4 + 4320q^3 - 5184q^2 + 6480q + 4320)</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>(20820q^4 - 3060q^3 + 1620q^2 + 9660q - 720)</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(13104q^4 - 720q^3 + 5184q^2 - 5040q - 2160)</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>(2430q^4 + 1350q^3 - 4050q^2 - 2430q + 540)</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>(240q^4)</td>
<td>(+ 240q)</td>
</tr>
<tr>
<td>(4)</td>
<td>(36q^4 - 180q^3 + 324q^2 - 180q)</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>(q^4 - 15q^3 + 81q^2 - 185q + 150)</td>
<td></td>
</tr>
</tbody>
</table>

using results from Bergvall–Gounelas ’19
Improvement in progress: other markings†

<table>
<thead>
<tr>
<th>marking</th>
<th>average count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 line</td>
<td>1</td>
</tr>
<tr>
<td>pair of skew lines</td>
<td>$1 - \frac{1}{q} + \frac{1}{q^4}$</td>
</tr>
<tr>
<td>pair of intersecting lines</td>
<td>1</td>
</tr>
<tr>
<td>2 (or 3) intersecting lines</td>
<td>$1 - \frac{1}{q^3} + \frac{1}{q^4}$</td>
</tr>
<tr>
<td>“tritangent”</td>
<td>1</td>
</tr>
<tr>
<td>sextet of skew lines</td>
<td>$1 - \frac{1}{q} + \frac{1}{q^4}$</td>
</tr>
<tr>
<td>“double six”</td>
<td>$1 - \frac{1}{q}$</td>
</tr>
<tr>
<td>27 lines</td>
<td>$1 - \frac{15}{q} + \frac{81}{q^2} - \frac{185}{q^3} + \frac{150}{q^4}$</td>
</tr>
</tbody>
</table>

†using results from Bergvall–Gounelas ’19
Embrace the singularity

- \(M = (\mathbb{C}^{20} \setminus \Sigma) / \mathbb{C}^\times \), where
 \(\Sigma = \{ \text{singular cubic polynomials} \} \), the \textit{discriminant locus}
Embrace the singularity

- $M = (\mathbb{C}^{20} \setminus \Sigma)/\mathbb{C}^\times$, where
 $\Sigma = \{\text{singular cubic polynomials}\}$, the discriminant locus

- Alexander duality $\implies H^*(M) \leftrightarrow H_*(\Sigma)$
Embrace the singularity

- \(M = (\mathbb{C}^{20} \setminus \Sigma) / \mathbb{C}^\times \), where
 \(\Sigma = \{ \text{singular cubic polynomials} \} \), the discriminant locus

- Alexander duality \(\implies H^*(M) \leftrightarrow H_*(\Sigma) \)

- Break up (stratify) \(\Sigma \) based on where \(F \in \Sigma \) is singular
Singular sets of singular cubics

all of $\mathbb{C}P^3$

three intersecting lines

two intersecting lines

four non-coplanar points

a line

two points

two points

a plane

a smooth conic and a point off its plane

a smooth conic

three non-collinear points

three non-collinear points

a point
Resolving Σ

- Replace Σ by the simplicial resolution $\Sigma' \to \Sigma$ for ‘better’ pieces
• Replace Σ by the simplicial resolution $\Sigma' \to \Sigma$ for ‘better’ pieces

- Pieces of Σ' are built out of:
 - a line
 - two points
 - a point

\[\vdots \]
Resolving Σ

- Replace Σ by the simplicial resolution $\Sigma' \to \Sigma$ for 'better' pieces

- Pieces of Σ' are built out of:
 - the vertices of the graph: e.g. space of all two point sets in $\mathbb{C}P^3$
Resolving Σ

- Replace Σ by the simplicial resolution $\Sigma' \to \Sigma$ for ‘better’ pieces

- Pieces of Σ' are built out of:
 - the vertices of the graph: e.g. space of all two point sets in $\mathbb{C}P^3$
 - the chains in the graph: e.g. space of all chains point \subset two points \subset line
Resolving Σ

- Replace Σ by the simplicial resolution $\Sigma' \to \Sigma$ for ‘better’ pieces

\[\cdots \]

\[\begin{align*}
\text{a line} \\
\text{two points} \\
\text{a point}
\end{align*} \]

- Pieces of Σ' are built out of:
 - the vertices of the graph: e.g. space of all two point sets in $\mathbb{C}P^3$
 - the chains in the graph: e.g. space of all chains point \subset two points \subset line

- Combine (co)homology of all the pieces in a spectral sequence . . .
Keeping track of the lines and points

<table>
<thead>
<tr>
<th>Just the surface</th>
<th>With line L</th>
<th>With point p</th>
</tr>
</thead>
<tbody>
<tr>
<td>two points</td>
<td>two points on L</td>
<td>p and another point</td>
</tr>
<tr>
<td>11 pieces</td>
<td>one on L, one off L</td>
<td>two points collinear with p</td>
</tr>
<tr>
<td></td>
<td>both off L, coplanar with L</td>
<td>two points not collinear with p</td>
</tr>
<tr>
<td></td>
<td>two points not coplanar with L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36 pieces</td>
<td>32 pieces</td>
</tr>
</tbody>
</table>
Singular sets of singular cubics containing the line L

- The line L and two other lines concurrent with L, but not coplanar
- Three lines concurrent with L, with two of those coplanar with L
- Three concurrent lines with two coplanar with L
- A plane containing L, a plane not containing L
- A smooth conic tangent to L and a point off its plane
- A smooth conic coplanar with L and a point off its plane
- A smooth conic intersecting with L but not coplanar and a point on L
- Three lines concurrent with L but not coplanar with L
- Two points on L, one off L
- One point on L, two more coplanar with L
- Three points coplanar with L but not on L
- Three points no two of which are coplanar with L
- Two points coplanar with L but not on L
- Three points not coplanar with L
- Two points not coplanar with L
- One point on L, two more points coplanar with L and another point
- Three points coplanar with L and another point
- Two pairs of points separately coplanar with L
- A smooth conic coplanar with L, a smooth conic tangent to L
- A smooth conic tangent to L and a point off its plane
- A smooth conic coplanar with L, a point not on L
- Two lines intersecting at a point of L
- Two lines not concurrent
- Two lines coplanar with L, but one intersecting L
- Two points on L, two other points
- One point on L, two more points coplanar with L, no two of those coplanar with L
- Three points coplanar with L, and another point
- Two points on L, one off L
- One point on L, two more not coplanar with L
- Three points coplanar with L but not on L
- Two points not coplanar with L
- One point on L, one point off L
- Two points coplanar with L, one point off L
- Two points not coplanar with L
- A point on L, a point not on L
- Two points on L, one point off L
- Two points on L, one point not off L
- A line intersecting L
- A line skew with L
- Two points on L, one point off L
- One point on L, two more coplanar with L
- Three points coplanar with L but not on L
- Two points coplanar with L, one point off L
- A line not containing L
- Two points on L, one point off L
- Two points coplanar with L but not on L
- A point on L, a point not on L